Bee model could be breakthrough for robot development

9th May 2016

Computer model of how bees avoid hitting walls could help autonomous robots in situations like search and rescue Scientists' take an important step in understanding how the bee brain processes the visual world Bees control their flight using the speed of motion, or optic flow Scientists at the University of Sheffield have created a computer model of how bees avoid hitting walls which could be a breakthrough in the development of autonomous robots.

Researchers from the Department of Computer Science built their computer model to look at how bees use vision to detect the movement of the world around them and avoid crashes. Bees control their flight using the speed of motion - or optic flow - of the visual world around them, but it is not known how they do this. The only neural circuits so far found in the insect brain can tell the direction of motion, not the speed. This study suggests how motion-direction detecting circuits could be wired together to also detect motion-speed, which is crucial for controlling bees' flight. -Honeybees are excellent navigators and explorers, using vision extensively in these tasks, despite having a brain of only one million neurons, said Dr Alex Cope, lead researcher on the paper. -Understanding how bees avoid walls, and what information they can use to navigate, moves us closer to the development of efficient algorithms for navigation and routing - which would greatly enhance the performance of autonomous flying robotics, he added. Professor James Marshall, lead investigator on the project, added: -This is the reason why bees are confused by windows - since they are transparent they generate hardly any optic flow as bees approach them. Dr Cope and his fellow researchers on the project; Dr Chelsea Sabo, Dr Eleni Vasilaki, Professor Kevin Gurney, and Professor James Marshall, are now using this research to investigate how bees understand which direction they are pointing in and use this knowledge to solve tasks. Their paper entitled -A Model for an Angular Velocity-Tuned Motion Detector Accounting for Deviations in the Corridor-Centering Response of the Bee is published in PLOS Computational Biology.

You might also be interested in

Landmark skills training report calls for wide-ranging reboot of UK system

Thu 6th May 2021

A major new report is calling for a root and branch reform of the UK’s training system to help businesses access the skills they need to boost productivity.

Sheffield Chamber Comments on Sheffield City Region Quarterly Economic Review Q1 2021 Results

Thu 6th May 2021

On 27th April 2021 businesses from across the region gathered to hear the latest results following the Sheffield City Region (SCR) Quarterly Economic Review for Q1.

BCC welcomes ratification of UK-EU TCA but says work remains to be done

Thu 29th April 2021

Speaking after news that the Trade and Co-operation Agreeement has been ratified, Hannah Essex, Co-Executive Director of the BCC, said:

New Figures Show Workforce Growth Expected but Some Sectors Yet to See Signs of Revival

Thu 29th April 2021

The British Chambers of Commerce today released its Quarterly Recruitment Outlook for Q1 2021.